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Abstract: The spin transport through and near interfaces have been studied in magnet/normal metal based multilayer magnetic 

nanostructures in magneto-static and magneto-dynamic cases. Its features and accompanying effects, such as the 

magnetoresistance or the magnetic precession induced spin pumping and spin accumulation in adjacent normal metal are 

determined by the spin-dependent scattering on the interface. These effects are governed by the entire spin-coherent region that is 

limited in size by spin-flip relaxation processes and can be controlled by the spin-polarized current of different origin including 

the spin Hall effect. Conditions of realization of the mentioned spin currents in the multilayer magnetic nanostructures are 

studied. 
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1. Introduction 

Coupling between spin currents and localized magnetic 

moments in magnet (M)/normal metal (NM) based multilayer 

magnetic nanostructures constitutes the basis of the mutual 

control between electric current and static or dynamic 

magnetic states. Herewith, magnetic layers include magnets 

with the exchange interactions both ferromagnetic (F) and 

antiferromagnetic (AF) types (e.g., ferrimagnetics compounds 

like YIG, Gd3 Fe5O12 and AFs Fe3O4, NiFe2O4, NiO [1, 2]), 

normal metalsare nonmagnetic, usually, heavy metals with 

strong spin-orbit coupling (e.g., Pt, Ta, W). The mentioned 

interconnection in these magnetic nanostructures occur via the 

interface scattering of the spin-polarized current and its s-d 

exchange interaction with static or dynamic magnetic states 

[3-6]. The impact of the spin current on the magnetic states is 

manifested through the spin-transfer torque and the impact of 

the localized magnetic momentum on the spin current is 

manifested via the spin dependent interface scattering 

accompanying by magnetoresistance effect. The spin 

polarization can be induced by effective bias fields of different 

origin including fields caused by an exchange interaction and 

the strong spin-orbit coupling. The entire spin-coherent region 

is limited in size by spin-flip relaxation processes. 

In the case of static magnetic states, the mutual influence of 

the spin current and magnetic ordering can be manifested as 

the magnetiresistance effect of the dependence of the spin 

current on the magnetization orientation in the magnetic layer 

and vice versa, the dependence of the latter the spin current [5, 

6]. Such effects can constitute the base for magnetic writing 

techniques in non-volatile memory technologies such as 

MRAM [7] and racetrack memories [8]. They also include the 

giant magneto-resistance (GMR) effect in metallic magnetic 

multilayers, which has commercially utilized in high-end 

magnetic recording media [9]. Obtaining the mentioned 

multilayer magnetic nanostructures with properties of 

electric-controlled magnetic switching and the 

magnetic-controlled spin current involves the description of 

features of the spin transport in magnetic heterogeneous 

nanostructures allowing for the compatibility conditions at the 

interfaces [4, 10]. This is usually solved within the 

Landauer-Büttiker formalism [11] and more rigorously, using 

the non-equilibrium Keldysh-Green functions [12, 13]. 

In the case of the dynamic magnetic states, their 
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interconnection with the control spin current is affected by the 

magnetic precession-induced spin pumping and the spin 

accumulation in the normal metal layer at the interface [3, 10]. 

The action of the spin currents on the magnetic dynamics via 

the spin-transfer torque and the reciprocal process of spin 

pumping result in the effect of controlled magnetic 

auto-oscillations [14]. The magnetic dynamic damping is 

related to the spin pumping effect at the M|NM interface that 

can be compensated by the spin-transfer torque from the spin 

current of the converted input current. This spin transfer is 

governed by the reflection and transmission matrices of the 

system, analogous to the scattering theory of transport and 

interlayer exchange coupling. Due to interfacial processes, 

M|N coupling becomes important in the limit of ultrathing ( ≤  

10 nm) magnetic films and can lead to a sizable enhancement 

of the damping constant. 

The above-mentioned coupling effects at interfaces can 

occur in the magnetic nanostructures with both ferromagnetic 

(F) and antiferromagnetic (AF) exchange interactions, which 

are realized in fero- ferri- and antiferromagnetic materials. 

Normal metal layers are medium for the spin currents, which 

can be converted from the control charge current by the 

spin-orbit interaction, especially, the spin Hall and the 

spin-orbit Rashba [15, 16] effects. 

The paper is organized as follows. In Sec. l the 

spin-dependent transport in the F/N based magnetic 

nanostructure is studied for the static magnetization. In the 

modified Stoner model with potential barrier dependent on the 

physical parameters including the magnetization directions, 

the chemical potentials of the layers, and the contact 

conductances, the parametrically dependent scattering of 

spin-polarized current is investigated. The mentioned 

parameters are determined by the spin-polarized kinetic 

equations in the framework of the Keldysh Green function 

approach. It is considered both in single and composite F/N 

based magnetic nanostructures. In Sec. ll features of the 

interconnection between magnetization dynamics and the spin 

currents are studied in the F/N based nanostructures. The 

process of the magnetization precession-induced pumping 

spin current in the nonmagnetic layers is considered as the 

result of the parametric time dependence of the interfacial 

scattering with the precession as the parameter. It is shown 

that the spin pumping slows down the precession 

corresponding to an enhanced Gilbert damping constant in the 

Landau-Lifshitz-Gilbert model. The spin current related to the 

spin pumping, which flows back into the ferromagnetic layers 

and driven by the accumulated spins in the normal metal 

layers is also discussed. 

2. Spin Transport in the Case of Static 

Magnetic Field 

2.1. Features of Spin-Dependent Electric Current in the F/N 

Belayers 

Characteristic features of the spin-dependent transport and 

the interfacial scattering in multilayer magnetic 

nanostructures based on F/N bilayers are manifested the F/N 

bilayer (Figure 1). These features are related to the conditions 

under which long-range spin effects are observable in normal 

metals. Spins injected into a normal metal layer relax due to 

unavoidable spin-flip processes. 

 

Figure 1. A contact between a ferromagnetic (F) and a normal (N) metal 

layers. At the normal metal side, the current is denoted as the dotted line. The 

transmission coefficient from the ferromagnet to the normal metal is t and the 

reflection matrix from the normal metal to the normal metal is r. 

Naturally, the dwell time on the layer must be shorter than 

the spin-flip relaxation time in order to observe nonlocality in 

the electron transport. For a simple ferromagnet (F) normal 

metal (N) double heterostructure (F/N/F) with antiparallel 

magnetizations the condition can be quantified following [17]. 

The spin-current into the normal metal layer is roughly 

proportional to the particle current, ( / ) ~ /
tr

e ds dt I V R= , 

where s is the number of excess spins on the normal metal 

layer, V is the voltage difference between the two reservoirs 

coupled to the normal metal layer, and R is the F|N contact 

resistance. When the layer is smaller than the spin-diffusion 

length, the spin-relaxation rate is ( / ) /rel sfe ds dt s τ= − , where 

sfτ  denotes the spin-relaxation time on the layer. (Otherwise, 

this simple approach breaks down since the spatial 

dependence of the spin-distribution in the normal metal should 

be taken into account [18]). The number of spins on the 

normal metal layer is equivalent to a non-equilibrium 

chemical potential difference sµ δ∆ =  in terms of the energy 

level spacing δ (the inverse density of states) (more generally 

the relation between µ∆ and s is determined by the 

spin-susceptibility). The spin-accumulation on the normal 

metal layer significantly affects the transport properties when 

the non-equilibrium chemical potential difference is of the 

same order of magnitude or larger than the applied 

source-drain voltage, eVµ∆ >  or / /ℏsf KR Rδτ > , where 

2
/KR e h=  is the quantum resistance. Thus, 

spin-accumulation is only relevant for sufficiently small 

normal metal layers and/or sufficiently long 

spin-accumulation times and/or good contact conductances. 

The spin-dependent current in the model F/N bilayer 

(Figure 1) is expressed via the 2×2 distribution matrix matrix

( )f ε  in spin-space at a given energy ε  in the layer. The 

external reservoirs are assumed to be in local equilibrium so 

that the distribution matrix is diagonal in spin-space and 

attains its local equilibrium value 1 ( , )f f ε µα= , where 1  is 

the unit matrix, ( , )f αε µ  is the Fermi- Dirac distribution 
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function and µα  is the local chemical potential in reservoir α . 

The direction of the magnetization of the ferromagnetic layers 

is denoted by the unit vector mα . 

The 2×2 non-equilibrium distribution matrices in the layers 

in the stationary state are uniquely determined by current 

conservation 

rel

f
I

t

β
αβ

α

∂
=∑

∂

 
 
 

                 (1) 

where Iαβ  denotes the 2 × 2 current in spin-space from layer 

(or reservoir) α  to layer (or reservoir) β  and the term on 

the right hand side describes spin-relaxation in the normal 

layer. The right hand side of the equation (1) can be set to zero 

when the spin-current in the layer is conserved, i.e. when an 

electron spends much less time on the layer than the spin-flip 

relaxation time sfτ . If the size of the layer in the transport 

direction is smaller than the spin flip diffusion length 

sf sfl Dτ= , where D  is the diffusion coefficient then the 

spin-relaxation in the layer can be introduced as 

( ) ( )/ 1Tr( ) / 2 - /
N N N

sf
rel

f t f f τ∂ ∂ = . 

2.2. Passing the Electric Current Through the F|N Contact 

The relation between the current in the F/N bilayer through 

the F|N interface and electron distribution functions in F and N 

can be described by the non-equilibrium Keldysh-Green 

functions and their equations representing the 

quantum-kinetic equations for the one-particle propagator. 

The corresponding Hamiltonian has the form 

(1) (1, 2)H h w= +                 (2) 

where 

( )2(1) (1)
1

(1) (1) (1)
2

ℏ
p s

i Ah V V
m

ϕ − ∇+ + +  
= − +  

is the one-particle operator describing electrons in 

electromagnetic field, (1)
p

V  and (1)
s

V  are spin-independent 

and spin-dependent parts of the one-electron potential, (1, 2)w  

is the operator of the two-particle interaction. Here 1 and 2 

denote coordinates 1 r  and 2 r . The spin-dependent potential 

(1) ( ) (1)m
s s

V Wσ= ⋅  existences only in the magnetic metal and 

vanishes in the normal metal. 

The physical properties of the system are described by the 

one-particle non-equilibrium Green function, i.e., the 

expectation value of the time contour-ordered product of 

creation and annihilation field operators †
(1)ψ  and (1)ψ , 

respectively, with 1 1 11 = ( , )r s ; z  ( 1s  is the spin variable). The 

variable iz  changes along the Keldysh contour, from the 

initial real time 0t  (before which the system is in an 

equilibrium state) to t , that correspond to the forward 

time-evolution of the state, and then it change from t  to 0t , 

that correspond to backward time-evolution of the system. 

The change of iz  on the imaginary time interval 0 0,[ ]t t iβ−  

(where β  is the inverse temperature) corresponds to the 

equilibrium state. The conjunction of the mentioned time 

intervals forms the so-called Keldysh contour C  consisting 

of forward and backward real-time branches and the thermal 

imaginary track. This non-equilibrium Green function can be 

presented as [12, 13] 

0

(z)dz (1)

(z)dz (1)

†
Tr (1) (2)

(1, 2)

Tr

C
C

C
C

i H

i H

T e

G i

T e

ψ

ψ

ψ ψ− ∫

− ∫
= −

 
 

 
 

, 

†
(1) (2)H Hi ψ ψ= −                         (3) 

where CT  is contour time-ordering operator on the Keldysh 

contour C  with 0 0 0[ , ]( ) z t t iH z H(z) | β∈ −= , the subscript H  in 

the right hand side denotes the Heisenberg representation. Due 

to (3) the Green function can be presented as 

1 2 2 1(1, 2) ( , ) (1, 2) ( , ) (1, 2)G z z G z z Gθ θ> <= +         (4) 

where 1 2( , )z zθ  is the contour step function equal 1 or 0 

versus 1z or 2z  is later on the contour C  and the greater 

( G
> ) and lesser ( G

< ) Green functions are determined by the 

relations 

† †
(1, 2) (1) (2) , (1, 2) (2) (1)H H H HG i G iψ ψ ψ ψ> <= − =   (5) 

where an extra – sign is introduced due to the interchange of 

the Fermionic operators by the contour ordering operator CT . 

The Green function provides a direct access to observable 

physical quantities of the system. For example, the equal-time 

limit gives directly the particle spin density at the space-time 

point 1 

†
(1) (1) (1) (1,1 )H Hn Gψ ψ < += = −           (6) 

(a superscript “+” means infinitesimal). The spin current 

density is determined as 

{ }'
'

(1) ( , ') ( , ')t t
t t

I G t t G t t
< <

=
= − ∂ + ∂         (7) 

The Green functions are described by the equation 

{ }
1

(1) (1, 2) (1, 2) 3 (1, 3) (1, 3; 2, 3 )zi h G d w Gδ +∂ − = + ∫    (8) 

following of the Schrӧdinger equation for wave functions of 

the system. Here, the two-particle Green function 

† † †
(1, 3; 2, 3 ) (2) (1) (3) (3 ) (2)H H H H H

G ψ ψ ψ ψ ψ+ +=     (9) 

expresses via the functional derivative with respect to the 

variation in the infinitesimal external potential ν  of the 

one-particle Green function by the relation [12] 
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(1, 2)
(1, 3; 2, 3 ) (3) (1, 2)

(3)

G
G i n G

δ

δν
+ = +        (10) 

Consequently, the equation (8) can be represented as 

self-contained functional derivative equation with the matrix 

representation 

( )0 1
1L L G+ =                (11) 

where the matrix 0
L  is determined by matrix elements 

( )0 *

1,2(1, 2) (1) 3 (1, 3) (3)zL i h d w n δ= ∂ − + ∫      (12) 

not containing the functional derivative. The matrix 1
L  is 

determined by matrix elements 

1

1,2(1, 2) 3 (1, 3)
(3)

L i d w
δ

δ
δν

= ∫          (13) 

which proportional to the functional derivative. 

The expression for the functional derivative 

1

(3) (3)
G G G G

δ δ

δν δν
−=  

             (14) 

(the bracket separates the expression experiencing the 

variation differentiation) allows to represent the operation of 

the differential matrix 1
L  on G  via the self-energy matrix Σ  

not containing functional derivatives: 

1 1 1
,L G G L G G

−= Σ Σ =  
             (15) 

Finally, the matrix equation (10) reduces to the system 

( )0
1L G+ Σ =                (16) 

1 0
L G LΣ = − + Σ 

              (17) 

The first-order approximation with respect to the 

interaction w  determines the Hartree-Fock self-energy 

matrix HF 1 0
L G LΣ = −  

   with matrix elements 

HF
(1, 2) (1, 2) 3 (1, 3) (3) (1, 2) (1, 2)d w n iw GδΣ = − +∫   (18) 

Here the first term describes the classical Hartree potential 

at 1 produced by the charge density throughout the space and 

the second term is the space-nonlocal exchange potential 

originating from the Pauli exclusion principle and 

antisymmetry of the wave functions. Due to (16) the 

self-energy matrix in second-order approximation is 

determined by the equation 

1 0 1 1 0
L G L L G L G LΣ = − +     

    
        (19) 

with matrix elements of the form 

2 HF
(1, 2) (1, 2) 3 4 (1, 3) (2, 4) (4, 3) (3, 4 )G d d w w G G

+Σ = Σ + ∫  

3 4 (1, 3) (1, 4) (3, 4) (4, 2) (3, 2)d d G w G G w− ∫   (20) 

Here the second and third terms describe the correlation and 

scattering effects. 

Equation Chapter 1 Section 1 In the case under considered 

of negligible small influence of correlation and scattering 

effects in the stationary situation, the Green function in the 

energy representation for the bilayer Fe/N is decomposed into 

quasi-one-dimensional modes as 

'
' ' '

,

'
(1,1') ( , ) ( ', )

n m
n m s s

ss nsms s s
nm

i k x i k x
G G x x' e

αβ

αβ

α βχ ρ χ ρ∗ −= ∑   (21) 

Here the indices , ( , )α β = + − , where the signs " "+  and " "−  

denote right-going (+) and left-going (−) modes, respectively, 

( , )
n

s xχ ρ  is the transverse wave function and n

sk  denotes the 

longitudinal wave-vector for an electron in transverse mode 

n with spin s . Then, based on the definition of the current 

through the Green function and taking into account the spatial 

independent the transverse wave function ( , )
n

s xχ ρ  can be 

obtained the expression  

( )' ' ' '( ) ( , ) ( , ) ( , )
n m n m

ss s s nsms s s
n

I x ie v v G x x d x x
αβ

αβ
α β ρχ ρ χ ρ= −∑ ∫   (22) 

for the spin current, where /ℏ
n n

s sv k m=  is the longitudinal 

velocity for an electron in transverse mode n with spin s . In a 

normal metal, the transverse states and the longitudinal 

momentum are spin-independent and the spin current 

simplifies to 

' '( ) 2 ( , )
n

ss s nsms
n

I x ie v G x x
αα

α
α= ∑           (23) 

which is used in the calculation of the spin current on the 

normal side of the contact. 

Using the representation 

,'
' '

'

sign( ')( , ')
( , ') 1

nsms
nsms ss nn m

ss s

x - xg x x
G x x i

vv v

αβ
α βαβ αδ

δ= − +
 
 
 
 

  (24) 

where the latter term does not contribute to the current on the 

normal side of the interface F|N, the expression 

' '( ) 2 ( , )
n

ss s nsms
n

I x e v g x x
αα

α
α= ∑            (25) 

can be obtained for the spin current on the normal metal side. 

The complete description of the spin current through the 

F|N interface involves taking into account the connection 

between waves propagating to the right (left) on the right hand 

side of the contact Rψ +
( )Rψ −  and waves propagating to the 

right (left) on the left hand side of the contact Lψ +
( )Lψ − . This is 

described by the transfer matrix M  obeying the relation 
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R L

R L

M
ψ ψ

ψ ψ

+ +

− −=
   
   
   

              (26) 

which in terms of the transmission and reflection coefficients 

takes the form 

1 1

1 1

'( ) '( ')

( ') ( ')

t r t' r r t
M

t r t

− −

− −
−

=
−

 
 
 

          (27) 

Here the transmission and reflection coefficients enter in 

definition of the scattering matrix 

'

'

r t
S

t r
=  
 
 

              (28) 

where s

nmr
σ  is the reflection matrix for incoming states from 

the left in mode m  and spin σ  to mode n with spin s , s

nmt
σ  

is the transmission matrix for incoming states from the left 

transmitted to outgoing states to the right. In addition, 'r  is 

the reflection matrix for incoming states from the right 

reflected to the right, and 't is the transmission matrix for 

incoming states from the right transmitted to the left. The 

Green function to the left ( 2x x= ) of the interface is expressed 

via the Green function to the right ( 1x x= ) of the interface by 

the expression 

' '' '' '

' 2 '' '' ' 1
'', ''

( , ') ( , ')nsms nsls ls ms
ls

g x x x M g x x x
σσ σσ σ σ

σ
= = =∑    (29) 

In the matrix form †

2 1g Mg M= , ( 2(1) 2(1)( ,g g x x= =
 

2(1)' )x x= ). 

In the approximation of isotropic quasi-classical Green 

functions in nanolayers 1 and 2, 1 ' , 1 '( ) ( ) .nsms n m ssG G
αβ αβ αβδ δ=

Considering the representation of the Green function in terms 

of the retarded R
G , advanced A

G  and Keldysh K
G  Green 

functions 

0

R K

A

G G
G

G
=
 
 
 

 

it can be obtained that 1R AG G= − = −  and ,1(2) 1(2)1KG h= , 

where the two-dimensional matrix h  is related to the 

non-equilibrium distribution functions 1(2) 1(2)2( ( ) 1)h f ε= − . 

Herewith 

,1 ,22 , 2 'R Rg r g r
−+ +−= =            (30) 

and 

† † † †

,1 2 1 ,2 1 2' ' , ' 'K Kg t h t h r g th t r h r
−− −−= + = +       (31) 

Inserting the expressions (31) into (25) results in the 

expression 

( ){ }' ( ) ( )
nm F mn F nm N mn

mm

e
I t f t' Mf f

h
τ τ ++= − −∑  

 
   (32) 

which describes the current through interface on its normal 

metal side. Here '

nm

ssr  is the reflection coefficient for electrons 

from transverse mode m with spin 's incoming from the 

normal metal side reflected to transverse mode n  with spin s 

on the normal metal side, and ''
nm

sst  is the transmission 

coefficient for electrons from transverse mode m  with spin 

's  incoming from the ferromagnet transmitted to transverse 

mode n  with spin s  on the normal metal side. (Note that the 

hermitian conjugate in (32) operates in the spin-space and the 

space spanned by the transverse modes, e.g. 
*

' 's( ) ( )
mn nm

ss sr r
+ = ). 

2.3. Parametric Spin Dependence of Electric Current 

Through Contact 

The relation (32) between the current and the distribution 

functions has a simple form after transforming the 

spin-quantization axis. Disregarding spin-flip processes in the 

contacts, the reflection matrix for an incoming electron from 

the normal metal transforms as 

nm s nm

s
s

r u r= ∑                  (33) 

where ( )

nm
r↑ ↓  are the spin-dependent reflection coefficients in 

the basis where the spin-quantization axis is parallel to the 

magnetization in the ferromagnet, the spin-projection matrices 

are 

( )
(1 ) / 2mu σ↑ ↓ = ± ⋅              (34) 

and σ  is a vector of Pauli matrices. Similarly for the 

transmission matrix ( )

nm
t↑ ↓  

2

' ( ' ) | t' | ,
nm mn s nm

s
s

t t u
+ = ∑           (35) 

where ( )'
nm

t ↑ ↓  are the spin-dependent transmission coefficients 

in the basis where the spin-quantization axis is parallel to the 

magnetization in the ferromagnet. From the unitarity of the 

scattering matrix, it is follows that the general form of the 

relation (32) reads 

( ) ( )F N F N
eI G u f f u G u f f u

↑ ↑ ↑ ↓ ↓ ↓= − + −  

( )*
N N

G u f u G u f u
↑↓ ↑ ↓ ↑↓ ↓ ↑− −             (36) 

where it is introduced the spin-dependent conductances G
↑

and G
↓  

2 2
2 2

( )

( ) ( )| | | |
nm nm

nm

e e
G M r t

h h nm

↑ ↓
↑ ↓ ↑ ↓= − =∑ ∑

 
  

     (37) 
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and the mixing conductance 

( )
2 *

nm nm

nm

e
G M r r

h

↑↓
↑ ↓= − ∑

 
  

        (38) 

The precession of spins leads to an effective relaxation of 

spins non-collinear to the local magnetization in ferromagnets 

and consequently the distribution function is limited to the 

form 01 m
F F F

sf f fσ= + ⋅ . Such a restriction does not appear in 

the normal metal layer and N
f  can be any hermitian 2 × 2 

matrix. 

The relation between the current through a contact and the 

distributions in the ferromagnetic layer and the normal metal 

layer are determined by four parameters, the two real 

spin-dependent conductances ( ,G G
↑ ↓ ) and the real and 

imaginary parts of the mixing conductance G
↑↓ . These 

contact-specific parameters can be obtained by microscopic 

theory or from experiments. The spin-conductances G
↑  and 

G
↓  describe spin-transport for a long time [19]. The mixing 

conductance is relevant for transport between non-collinear 

ferromagnets. Note that although the mixing conductance is a 

complex number the 2 × 2 current in spin-space is hermitian 

and consequently the current and the spin-current in any 

direction given by (36) are real numbers. Due to the 

definitions of the spin-dependent conductances (37) and the 

‘mixing’ conductance (38) 

2
2

2 Re |
nm nme

G G G | r r
h nm

↑↓ ↑ ↓
↑ ↓= + + −∑       (39) 

and consequently, the conductances should satisfy the relation 

2 Re G G G
↑↓ ↑ ↓≥ + . 

In terms of a scalar particle and a vector spin-contribution 

0(1 ) / 2,I I Isσ= ± ⋅  ( ) ( ) ( )

0 ( )1 mf f s f
N F N F N F

s sσ= ± ⋅  and the 

particle current is described by the expression 

( )( ) ( )( )0 0 0 - m s
F N F N

s sI G G f f G G f f
↑ ↓ ↑ ↓= + + + − ⋅   (40) 

The familiar expressions for collinear transport are 

recovered when 1m s =⋅ ± . The spin-current is 

( ) ( ) ( )0 0I m
F N F

s sG G f f G G f
↑ ↓ ↑ ↓= − − + +


 

( )2 Re m s
N

sG G G f
↑↓ ↑ ↓+ − − ⋅ 


 

2 Re ( )2 Ims m s
N N

s sG f G f
↑↓ ↑↓− + ⋅         (41) 

The first three terms point in the direction of the 

magnetization of the ferromagnet m , the fourth term is in the 

direction of the non-equilibrium spin-distribution s , and the 

last term is perpendicular to both s  and m . The last 

contribution solely depends on the imaginary part of the 

mixing conductance. This term can by interpreted by 

considering how the direction of the spin on the normal metal 

layer s would change in time keeping, all other parameters 

constant. The cross product creates a precession of s  around 

the magnetization direction m  of the ferromagnet similar to a 

classical torque while keeping the magnitude of the 

spin-accumulation constant. In contrast, the first four terms 

represent diffusion-like processes, which decrease the 

magnitude of the spin-accumulation. Due to (40) the 

non-equilibrium spin-distribution N

sf  propagates easier into 

a configuration parallel to s  than parallel to m , since these 

processes are governed by positive diffusion-like constants 

2 Re G
↑↓  and 2 Re G G G

↑↓ ↑ ↓− − , respectively. 

2.4. Spin-Dependence Currents for Different Types of 

Contacts 

The four conductance parameters G
↑ , G

↓ , Re G
↑↓  and 

Im G
↑↓  depend on the microscopic feature of interfaces at 

given the crossection A , the length of the normal and 

ferromagnetic parts of the contact N
L  and F

L , respectively, 

the conductivity on the normal side Nσ  and the 

spin-dependent conductance of the ferromagnetic part sFσ . 

They are different for a diffusive, a ballistic, and a tunnel 

contact. 

In the case a diffusive contact between a normal metal and a 

ferromagnet, the conductances of the normal and 

ferromagnetic parts are /
N N N

DG A Lσ=  and /
F F F

DG A Lσ= , 

respectively. The spin-dependent conductances of the whole 

contact are obtained as the diffusive ferromagnetic and normal 

metal regions: 

,

F N F N

D D D D
D DF N F N

D D D D

G G G G
G G

G G G G

↑ ↓
↑ ↓

↑ ↓
= =

+ +
         (42) 

These spin-dependent conductances ( DG
↑  and DG

↓ ) fully 

describe collinear transport (in the absence of spin-flip 

scattering). For non-collinear magnetizations the mixing 

conductance, which is also needed, can be derived from the 

scattering matrix. The latter follows from the diffusion 

equation, describing the scattering properties of the contact by 

a spatially dependent distribution matrix. The current density 

on the normal side of the contact ( 0x < ) is ( 0)
N

xi x fσ< = ∂

and consequently the total current is 

( )( 0)
N N

D xI x G L f< = ∂ , 

where f  is the spatially dependent distribution matrix on the 

normal side in the contact. In the normal metal part the 

boundary condition is ( )
N N

f x L f= − = . In a ferromagnet 

spin-up and spin-down states are incoherent, and hence spins 

non-collinear to the magnetization direction relax and only 

spins collinear with the magnetization will propagate 

sufficiently far away from the F|N-interface. It is assumed that 

the ferromagnet is sufficiently strong and that the contact is 

longer than the ferromagnetic decoherence length 

/ exD hξ = , where D  is the diffusion constant and hex is the 

exchange splitting. The decoherence length is typically very 
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short in ferromagnets, 2ξ = nm in Ni wires. 

The distribution function on the ferromagnetic side can then 

be represented by a two-component distribution function 

( 0)f x u f u f
↑ ↑ ↓ ↓> = +             (43) 

where u
↑  and u

↓  are the spin-projection matrices (34). 

Here a spin-accumulation collinear to the magnetization 

direction in the ferromagnet is taken into account. The 

boundary condition determined by the distribution function in 

the ferromagnetic part is thus 

( ) , ( )
F F F F

f x L f f x L f
↑ ↑ ↓ ↓= = = =       (44) 

In assumption that the resistance of the diffusive region of 

the contacts is much larger than the contact resistance between 

the normal and the ferromagnetic metal, the total current in the 

ferromagnet is described as 

( 0)
F F

D x D xI x G u f G u f
↑ ↑ ↑ ↓ ↓ ↓> = ∂ + ∂          (45) 

Here, distribution function is continuous across the F|N 

interface, (0 ) (0 )f f
+ −= . Current conservation on the left 

( 0x < ) and on the right ( 0x > ) of the normal 

metal-ferromagnet interface dictates the equation, 0x I∂ = , 

which together with the boundary conditions (44), 

( )
N N

f x L f= − =  and (0 ) (0 )f f
+ −=  uniquely determine the 

distribution functions and hence the conductance in the 

diffusive contact. The current on the normal side of the contact 

becomes 

( ) ( )F N F N

D DeI G u f f u G u f f u
↑ ↑ ↓ ↓ ↓ ↓= − + −  

( ) ( )N F N F N

DG u f f u u f f u
↑ ↓ ↓ ↓+ − + − 

 
    (46) 

The current in a diffusive contact thus takes the generic 

form (36) with DG G
↑ ↑= , DG G

↓ ↓=  and N

DG G
↑↓ = . The 

mixing conductance is thus real and only depends on the 

normal conductance. The latter results can be understood as a 

consequence of the effective spin-relaxation of spins 

non-collinear to the local magnetization direction. Those spins 

cannot propagate in the ferromagnet, and consequently the 

effective conductance can only depend on the conductance in 

the normal metal as (41) explicitly demonstrates. 

In the case of the ballistic contact, the reflection and 

transmission coefficients appearing in (37) and (38) are 

diagonal in the space of the transverse channels since the 

transverse momentum is conserved. In a simplified model [20] 

the transmission channels are either closed 0t =  or open 

1t = . The conductances (36), (37) can then be found by simply 

counting the number of propagating modes. Then the 

spin-dependent conductance ( ) 2 ( )
/( ) ,B hG e N

↑ ↓ ↑ ↓=  where N
↑

( N
↓ ) is the number of spin-up (spin-down) propagating 

channels The mixing conductance is determined by 

max( , )B B BG G G
↑↓ ↑ ↓=  and is real. In a quantum mechanical 

calculation the channels just above the potential step are only 

partially transmitting and the channels below a potential step 

can have a finite transmission probability due to tunneling. 

Furthermore, the band structure of ferromagnetic metals is 

usually complicated and interband scattering exists even at 

ideal interfaces. The phase of the scattered wave will be 

relevant giving a non-vanishing imaginary part of the mixing 

conductance. 

In the case of a tunneling contact, the transmission 

coefficients are exponentially small and the reflection 

coefficients have a magnitude close to one. The 

spin-dependent conductance is 

2
2

| |
s nm

T s
nm

e
G t

h
= ∑                 (47) 

For simple models of tunnel barriers 

exp
nm nm nm

s s

n
r i rδ φ δ= = , where the phase-shift nφ  is 

spin-independent. The expansion (38) in the small correction 
nm

srδ  leads to the expression 

( )Re / 2T T TG G G
↑↓ ↑ ↓= +  

where TG
↑  and TG

↓  are the spin-dependent tunneling 

conductances (47). Since the transmission coefficients in a 

tunnel contact are all exponentially small, the imaginary part 

of TG
↑↓  is of the same order of magnitude as TG

↑  and TG
↓  

but it is not universal and depends on the details of the contact. 

3. Spin Transport in the Case of Dynamic 

Magnetic Field 

3.1. Features of Coupling Spin Currents with Magnetic 

Dynamics 

The interconnection between spin currents and the 

magnetic dynamics in F/N based magnetic multilayer 

nanostructures underlies the current-controlled magnetic 

dynamics and utilizing of the latter as new functionality in 

spintronic devices [21]. One is related to the s-d exchange 

interaction with localized spins and the spin-dependent 

scattering of spin-polarized electrons near the N|F interface. 

The impact of the spin current on localized spins occurs via a 

finite torque on the magnetic order parameter, and, vice versa, 

a moving magnetic order vector loses torque by emitting a 

spin current. The magnetic precession acts as a spin pump 

which transfers angular momentum from the magnetic into 

normal metal. 

The technological potential of the mentioned magnetic 

nanostructures is related to utilizing transition metals (for 

instance, Co, Ni, Fe) that operate at ambient temperatures. 

Examples are current-induced tunable microwave generators 

(spin-torque oscillators) [22, 23], and non-volatile magnetic 

electronic architectures that can be randomly read, written or 

programmed by current pulses in a scalable manner [24]. The 

interaction between currents and magnetization can also cause 

undesirable effects such as enhanced magnetic noise in read 
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heads made from magnetic multilayers [25]. 

In the framework of the Landau-Lifshitz-Gilbert model, the 

impact of the spin current on the magnetic dynamics, caused 

by the spin transfer, reduces to change of fundamental 

parameters such as the gyromagnetic ratio and Gilbert 

damping parameters. This spin transfer is governed by the 

reflection and transmission matrices of the system, analogous 

to the scattering theory of transport and interlayer exchange 

coupling. In the case when the normal metal layers adjacent to 

the ferromagnetic layers are perfect spin sinks, the spin 

accumulation in the normal metal vanishes [24]. In the 

opposite case, the spin accumulation accompanies by the spin 

diffusion, which gives essential contribution to the total spin 

current and its interconnection with magnetic dynamics. 

Spin pumping by a precessing ferromagnet is, in some sense, 

the reverse process of current-induced magnetization 

dynamics. When the pumped spin angular momentum is not 

quickly dissipated to the normal-metal atomic lattice, a spin 

accumulation builds up and creates reaction torques due to 

transverse-spin backflow into ferromagnets. The interplay 

between magnetization dynamics and the nonequilibrium 

spin-polarized transport in heterostructures determining 

magnetic properties will be considered for the case of F/N 

based nanostructures below. 

3.2. Precession-Induced Spin Pumping Through F/N 

Interfaces 

Characteristic properties of the precession-induced spin 

pumping are manifested in the model N/F/N magnetic 

junction schematic of which is displayed in Figure 2. The 

ferromagnetic layer F is a spin-dependent scatterer that 

governs electron transport between (left (L) and right (R)) 

normal metal reservoirs. The 2 2×  operator Il  for the 

charge and spin current in l th lead ( ,l L R= ) can be expressed 

in terms of operators , ( )m la Eα and , ( )m lb Eα that annihilate a 

spin- α  electron with energy E  leaving (entering) the l th 

lead through the m th channel: 

 

Figure 2. Ferromagnetic layer (F) sandwiched between two normal metal 

layers (N). The reflection and transmission amplitudes r and t’ govern the spin 

current pumped into the right lead. 

( ) t/
( ) '

ℏ

l
m

i E-E'e
I t dEdE e

h

αβ = ∑ ∫  

† †

, , ,,( ) ( ) ( ) ( )m l m l m lm la E a E' b E b E'β β αα× − 
       (48) 

When the scattering matrix , ' ( )mn lls t
αβ  of the ferromagnetic 

layer varies slowly on the time scales of electronic relaxation 

in the system, an adiabatic approximation may be used. The 

annihilation operators for particles entering the reservoirs are 

then related to the operators of the outgoing states by the 

instantaneous value of the scattering matrix 

, , ' , '( ) ( ) ( )m l mn ll n lb E s t a E
αβ

α β= . In terms of ,m laα  only, we can 

evaluate the expectation value ( )lI t
αβ  of the current 

operator using †

, , ' , , , '( ) ( ) ( ) ( ')m l n l l m n l la E a E' f E E Eα β α βδ δ δ δ= − , 

where ( )lf E  is the (isotropic distribution function in the l th 

reservoir. When the scattering matrix depends on a single 

time-dependent parameter ( )X t , then the Fourier transform of 

the current expectation value ( ) ( )l l

i t
I dte I t

ωω = ∫  can be 

written as 

,( ) ( ) ( )l X lI g Xω ω ω=               (49) 

In terms of a frequency ω - and X -dependent parameter 

,X lg : 

'
,

'

( )
( )

4

l
X l

l

f Ee
g dE

E

ω
ω

π

∂
= − −∑ ∫

∂

 
 
 

 

, ' †

, '

( )
( ) H .c .

mn ll

mn ll
mn

s E
s E

X
×

∂
− −∑

∂

 
 
 

         (50) 

Equation (49) is the first-order (in frequency) correction to 

the dc Landauer-Büttiker formula [11]. At equilibrium 

( ) ( )R Lf E f E= , (49) is the lowest-order nonvanishing 

contribution to the current. Furthermore, at sufficiently low 

temperatures, we can approximate ( ) /lf E E∂ ∂  by a δ  

-function centered at Fermi energy. The expectation value of 

the 2 2×  particle-number operator ( )lQ ω  (defined by

( ) ( )l lI t dQ t= /dt ) in time or by ( ) ( )l lI i Qω ω ω= −  in frequency 

domain) for the l th reservoir is then given by 

, ' †

, '
'

( )
( ) ( ) H .c . ( )

4

mn ll

l mn ll
mnl

s Ee
Q s E X

i X
ω ω

π

∂
= +∑

∂

 
 
 

  (51) 

where the scattering matrices are evaluated at the Fermi 

energy. Because the prefactor on the right-hand side of (51) 

does not depend on frequency ω , the equation is also valid in 

time domain. The change in particle number ( )lQ tδ  is 

proportional to the modulation ( )X tδ  of parameter X  and 

the 2 2×  matrix current (directed into the normal-metal leads) 

reads 

(t)
( )

l
l

dn dX
I t e

dX dt
=                (52) 

where the “matrix emissivity” into lead l  is 
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, ' †

, '
'

( )1
( ) H .c .

4

mn lll
mn ll

mnl

s En
s E

X i Xπ

∂∂
= +∑

∂ ∂
     (53) 

If the spin-flip scattering in the ferromagnetic layer is 

disregarded, the scattering matrix s  can be written in terms 

of the spin-up and spin-down scattering coefficients ( )
s

↑ ↓  

using the projection matrices (1 ) / 2u mσ↑ = + ⋅  and 

(1 ) / 2u mσ↓ = − ⋅ : 

, ' , ' , 'mn ll mn ll mn lls s u s u
↑ ↑ ↓ ↓= +            (54) 

The spin current pumped by the magnetization precession is 

obtained by identifying ( ) ( )X t tϕ= , where ϕ  is the 

azimuthal angle of the magnetization direction in the plane 

perpendicular to the precession axis. For simplicity, we 

assume that the magnetization rotates around the yax is: 

(sin ,0, cos )m = ϕ ϕ . Using (54), it is then easy to calculate the 

emissivity (53) for this process: 

1
( cos sin )

4

l
r y i x y

n
A Aσ σ ϕ σ ϕ

ϕ π

∂
= − + −

∂
      (55) 

where ( ) Re(Im)[g ]r iA A t
↑↓ ↑↓= − . Expanding the 2 2×  current 

into isotropic and traceless components, 

1

2
I

ℏ
c s

e
I I σ= − ⋅                  (56) 

here the charge current cI  and spin current Is  are identified. 

Due to equations (52), (55) and (56) the charge current 

vanishes, 0cI = , and the spin current 

( )cos , sin
4

I
ℏ

s i r i

d
A A A

dt

ϕ
ϕ ϕ

π
= −          (57) 

can be rewritten as 

pump

4

m m
I m

ℏ

s r i

d d
A A

dt dtπ
= × −

 
 
 

           (58) 

This current into a given N layer depends on the 

complex-valued parameter r iA A iA= +  (the “spin-pumping 

conductance”) and the time-dependent order parameter of the 

ferromagnet ( )m t . In addition, A g t
↑↓ ↑↓= −  depends on the 

scattering matrix of the ferromagnetic layer since 

' ' *
(r )mn mn mn

mn

g r
σσ σ σδ= −∑  

             (59) 

is the dimensionless dc conductance matrix [10, 26] and 

' ' *
( )mn mn

mn

t t t
↑↓ ↑ ↓= ∑                   (60) 

Here mnr
↑  ( mnr

↓ ) is a reflection coefficient for spin-up 

~spin-down! electrons on the normal-metal side and ( )

mnt'
↑ ↓  is 

a transmission coefficient for spin-up (spin-down) electrons 

across the ferromagnetic film from the opposite reservoir into 

the normal-metal layer, where m and n label the transverse 

modes at the Fermi energy in the normal metal films. The 

magnetization can take arbitrary directions, in particular, ( )m t  

may be far away from its equilibrium value. In such a case, the 

scattering matrix itself can depend on the orientation of the 

magnetization, and one has to use in (58). 

When the ferromagnetic film is thicker than its transverse 

spin-coherence length / ( )d k kπ ↑ ↓> − , where Fk
↑↓  are the 

spin-dependent Fermi wave vectors, t
↑↓  vanishes [26], the 

spin pumping through a given F-N interface is governed 

entirely by the interfacial mixing conductance 

r iA g g ig
↑↓ ↑↓ ↑↓= = + , and we can consider only one of the two 

interfaces. 

The spin current (58) leads to a damping of the 

ferromagnetic precession, resulting in a faster alignment of the 

magnetization with the (effective) applied magnetic field 

H eff . The pumped spins are entirely absorbed by the attached 

ideal reservoirs. Thereto the enhancement rate of damping is 

accompanied by an energy flow out of the ferromagnet, until a 

steady-state is established in the companied F/N system. For 

simplicity, assume a magnetization which at time t  starts 

rotating around the vector of the magnetic field, ( )m Hefft ⊥ . 

In short interval of time tδ , it slowly changes toa short 

interval of time tδ , it slowly (i.e., adiabatically) changes to 

( ) = ( )m mt + t tδ + mδ . In the presence of a large but 

finitenonmagnetic reservoir without any spin-flip scattering 

attached to one side of the ferromagnet, this process can be 

expected to induce a nonvanishing spin accumulation 

Tr[ ( )]fs dµ ε σ ε= ∫               (61) 

where σ  is the Pauli matrix vector and ( )f ε  is the 2 2×  

matrix distribution function at a given energy ε . For a slow 

enough variation of ( )m t , this nonequilibrium spin imbalance 

must flow back into the ferromagnet, canceling any spin 

current generated by the magnetization rotation, since, due to 

the adiabatic assumption, the system is always in a steady 

state. 

For the spins accumulated in the reservoir along the 

magnetic field, || Hµs eff  flow of sN  spins into the normal 

metal transfers the energy / 2N s sE N µ∆ =  and 

angular-momentum / 2N s sL N µ∆ =  (directed along H eff ). 

By the conservation laws, / 2N s sE N µ∆ =  and F NL L∆ = −∆ , 

for the corresponding values in the ferromagnet. Using the 

magnetic energy f F effE L Hγ∆ = − ∆ , where γ  is the 

gyromagnetic ratio of the ferromagnet, we than find that 

ℏ ℏs effHµ γ ω= = , where ω  is the Larmor frequency of 

precession in the effective field. The spin-up and spin-down 

chemical potentials in the normal metal split by sµ , the 

energy corresponding to the frequency of the perturbation. 

The above mentioned the backflow of spin current back
I s , 

which equal to the pumping current pump
Is  described by the 
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expression 

( )back 1

2
I mµ µs r s i sg g

π
↑↓ ↑↓== + ×  

4

m m
m

ℏ

r i

d d
g g

dt dtπ
↑↓ ↑↓= × −

 
 
 

        (62) 

Here, it is used that ℏsµ ω=  and mµs ⊥ , since by the 

conservation of angular momentum, the spin transfer is 

proportional to the change in the direction m mδ ⊥ . Thus for 

the case of a single and finite reservoir (58) is recovered. It is 

easy to repeat the proof for an arbitrary initial alignment of m(t) 

with H eff . The expressions for the adiabatic spin pumping are 

not the whole story, since spin-flip scattering is essential. In 

this case, the spin build-up occurs in the normal metal at 

dynamic equilibrium. Then, the contribution to Is  due to the 

spin-accumulation-driven current back
I s  back into the 

ferromagnet: 

pump back
I I Is s s= −               (63) 

which vanishes in the absence of spin-flip scattering. 

The spin current out of the ferromagnet carries angular 

momentum perpendicular to the magnetization direction. By 

conservation of angular momentum, the spins ejected by Is

correspond to a torque T Is= − on the ferromagnet. If possible, 

interfacial spin-flip processes are disregarded, the torque t is 

entirely transferred to the coherent magnetization precession. 

The dynamics of the ferromagnet can then be described by a 

generalized Landau-Lifshitz-Gilbert (LLG) equation [5] 

0

m m
m H m Ieff s

s

d d

dt dt M V

γ
γ α= − × + +         (64) 

where 0α  is the dimensionless bulk Gilbert damping constant, 

sM is the saturation magnetization of the ferromagnet, and V

is its volume. The intrinsic bulk constant 0α  is smaller than 

the total Gilbert damping 0 'α α α= + . The additional damping 

'α  caused by the spin pumping is observable in, for example, 

FMR spectra here. 

3.3. Spin-Accumulation-Driven Backflow in the F/N 

Bilalyer 

The precession of the magnetization does not cause any 

charge current in the system. The spin accumulation or 

nonequilibrium chemical potential imbalance µs  (similar to 

(61), but spatially dependent now) in the normal metal is a 

vector, which depends on the distance from the interface x, 

0 x L< < , where L is the thickness of the normal-metal film 

(Figure 3). When the ferromagnetic magnetization steadily 

rotates around the z axis, m mt× ∂  and the normal-metal spin 

accumulation ( )µs x  are oriented along z, as depicted in 

Figure 2. There is no spin imbalance in the ferromagnet, 

because ( )µs x  is perpendicular to the magnetization 

direction m . As shown below, the time-dependent ms  is also 

perpendicular to m  even in the case of a precessing 

ferromagnet with time-dependent instantaneous rotation axis, 

as long as the precession frequency ω  is smaller than the 

spin-flip rate 1

sfτ − in the normal metal. 

The spin accumulation diffuses into the normal metal as 

2 1µ µ µs x s sf si Dω τ −= ∂ −                 (65) 

where D is the diffusion coefficient. The boundary conditions 

are determined by the continuity of the spin current from the 

ferromagnet into the normal metal at 0x =  and the vanishing 

of the spin current at the outer boundary x L= : 

1
0 : 2( ) ,Iµ ℏx sx NSDs

−= ∂ = −  

: 0µx sx L= ∂ =                     (66) 

where N  is the (one-spin) density of states in the lalyer and S 

is the area of the interface. The solution to (65) with the 

boundary conditions (66) is 

2cosh ( )
( )

sinh

I
µ

ℏ

s
s

k x L
x

kL NSDk

−
=                (67) 

 

Figure 3. Schematic of the F/N bilayer. Precession of the magnetization 

direction ( )m t  of the ferromagnet F pumps spin into the adjacent 

normal-metal layer N by inducing a spin current pump
Is . This lead to a 

build-up of the normal metal spin accumulation which either relaxes by 

spin-flip scattering or flows back into the ferromagnet as back
Is . 

with the wave vector 
1

1sd sfk iλ ωτ−= + , where sd sfDλ τ=  is 

the spin-flip diffusion length in the normal metal. 

Using relation 2
/ 3F elD v τ=  between the diffusion 

coefficient D, the Fermi velocity Fv , and the elastic scattering 

time elτ , we find for the spin-diffusion length 

/ 3sd el sfvFλ τ τ= . An effective energy-level spacing of the 

states participating in the spin-flip scattering events in a thick 

layer can be defined by 1
( )sd sdNSδ λ −= . The 

spin-accumulation-driven spin current back
I s through the 

interface reads 
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back 1
2 ( 0) 2 ( 0)

8
I mµ  µs r s i sg x g x

π
↑↓ ↑↓= = + × =

  

( )( 2 ) ( 0m  µr sg g g x
↑↑ ↓↓ ↑↓+ + − ⋅ =          (68) 

Substitution of (67) into (68) gives total spin current 

pump
2 2

2
I = I I m I s s r s i sg g

β ↑↓ ↑↓− + ×
  

( )( 2 ) m m Ιr sg g g
↑↑ ↓↓ ↑↓+ + − ⋅           (69) 

where the spin current returning into the ferromagnet is 

governed by the backflow factor sd( ) / ( tanh( / ))ℏsf sdLβ τ δ λ= . 

When the normal metals is shorter than the spin-diffusion 

length ( ≪ sdL λ ), /sf hβ τ δ→ , where 1
( )NSLδ −= . Basically,

β is therefore the ratio between the energy level spacing of the 

normal-metal layer with thickness min( )sf sdL L,λ=  and the 

spin-flip rate. 

By inverting (69) the total spin current Is  can be express in 

terms of the pumped spin current pump
Is , 

1
2

pump
1

1

( )
1 2

1
m II  

gi i
s r s

gr r

g
g

g

β

β

β

β

−↑↓ ↑↓
↑↓

− ×
↑↓ ↑↓

+
= + +

+

   
        

  (70) 

Substitution (58) into (70) results in total spin current Is , 

which is described by the equation of the form (58) but with a 

redefined spin-pumping conductance ' ' 'r iA A A= + , i.e. 

' '

4

m m
I m

ℏ

r is

d d
A A

dt dtπ
= × −

 
 
 

           (71) 

Here 'A  is function of the mixing conductance g
↑↓  and the 

backflow factor β , ' '( , )A A g β↑↓= . For realistic F|N interfaces 

ig
↑↓
≪ gr

↑↓ , so that rg g
↑↓ ↑↓≈  and, consequently, '

i
A  vanishes. 

After substituting (71) into (74) renormalizes its Gilbert 

dumping constant, 0α , so that 0 0 'α α α α→ = + , where 

1
2

( / )
' 1

4 tanh( / )
 

sf sd iL

sd

h gg g
g

L

τ δ β
α

πµ λ

−↑↓↑↓
↑↓= +

 
 
  

        (72) 

is the additional damping constant due to the interfacial 

F|Ncoupling. Here, Lg is the g factor and µ  is the total layer 

magnetic moment in units of Bµ . When L → ∞ , (72) reduces 

to a simple result: ' / 4L effg gα π↑↓=  where 1 / 1 /eff sdg g R
↑↓ ↑↓= + , 

where sd sfR τ= /sd hδ×  is the resistance (per spin, in units of 

2
/h e ) of the normal-metal layer of thickness sdλ . It follows 

that the effective spin pumping out of the ferromagnet is 

governed by effg
↑↓ , i.e., the conductance of the F|N interface in 

series with diffusive normal-metal film with thickness sdλ . 

The second factor on the right-hand side of (72) suppresses 

the additional Gilbert damping due to the spin angular 

momentum that diffuses back into the ferromagnet. Because 

spins accumulate in the normal metal perpendicular to the 

ferromagnetic magnetization, the spin–accumulation-driven 

transport across the F|Ncontact, as well as the spin pumping, is 

governed by a mixing conductance. 

4. Conclusions 

The spin transport In the F/N based magnetic 

nanostructures in magneto-static and magneto-dynamic cases 

have been studied in the framework of the modified Stoner 

model. Using the modified quantum-kinetic equation for the 

non-linear Green functions and the spin-dependent scattering 

matrix, the spin currents through and near the F|N interface are 

described. In the magneto-static case, the parametric 

dependence of the spin current on the relative orientation of 

the spin polarization and magnetization is shown. In the 

magneto-dynamic case of the magnetization precession, the 

precession-induced spin pumping into the normal metal layer 

is described. The accompanying effect of the spin 

accumulation and the spin backflow exerting via the spin 

torque on the magnetization precession are considered. 
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