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Abstract: In this paper, the device physics of carbon nanotubes is analyzed depend on the graphene structure. The analysis is 
done to calculate energy dispersion relation, effective mass and intrinsic carrier concentration of graphene to establish different 
carbon nanotubes. Diameters with different chiral vector (n, m) of carbon nanotubes vary the electronics properties of graphene. 
Different chiral vector of a graphene allows designing carbon nanotube (CNT) for different types of appliance, which can be 
achieved from the analyzed carrier concentration calculation. This investigation will helpful for further designing of CNT-based 
nano device. 
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1. Introduction 
The mechanical properties as well as the electronics 

properties of carbon nanotubes made a drastic change in nano 
technology research to make it exceptional for researchers. 
Though carbon nanotubes are miniature tubes made of 
carbon atoms that are nanometer diameter and their length is 
larger and is about micrometers. Carbon nanotubes are made 
from rolled graphene into a test-tube shape [1] radius and 
covering angle of CNTs provide the electronic structure [2]. 
CMOS technology is going to be limited in terms of the 
dimension of electronics device which will be recovered by 
using CNTs [3]. Many applications have been proposed in 
earlier period researches for carbon nanotubes together with 
nano semiconductors devices [4-6]. Tight binding model of 
CNTs help to calculate the analytical solution of 1D graphene 
[7-10] figure out from the electronic structure. 

2. Device Physics of CNT 
The development of numerous next generations’ device 

applications using CNTs are becoming to the researchers 
more attractive day by day for its exclusive electronic 
properties.  In present research, researchers are very curious 
about the development of like field effect transistors or 
sensing elements by using CNTs. The wave vectors are 
quantized in the circumferential direction for the sake of very 
small radius of carbon nanotubes. Furthermore, the fineness 
of the nanotube's cylindrical shell obviously acquiesce an 
even smaller length of confinement in the radial direction, 

thus making the material virtually one-dimensional as far as 
electron transport is concerned [11-14]. 

2.1. Reciprocal Lattice 

The primal cell of a CNT is described from the unit vectors 
by, 

R� = �� �√3x
 + y

		and	R� = �� �√3x
 − y

	      (1) 

where, R� and R� are the unit cell vectors of a CNT and a = 
2.49 Å is the carbon to carbon atom distance between two 
carbon particles and reciprocal lattice vectors are: 

a� = 2πa � 1√3 x
 + y
� 	and		b� = 2πa � 1√3x
 − y
� 
2.2. Graphene Electronic Structure 

To examine the conductivity properties of the nanotube, a 
two dimensional graphene lattice is derived for calculating the 
energy dispersion for CNTs by, 

E���K� = ±V  !"3 + 2Cos�KR�� + 2Cos�KR�� +2Cos[K�R� − R��](� �) 	         (2) 

where Vpp* is the adjacent shift integral. The 3D view of 
graphene electronic structure is shown in Fig. 1.  
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Figure 1. Graphene electronic structure plot for valence and conduction 
band. 

A single-walled CNTs’ 1D energy band can also be 
calculating by, 

E���k� = ±V  ! ,1 + 4Cos .√/01� a2Cos .03� 2 + 4Cos� .03� 24
� �)  (3) 

Here K5 and K6 are the wave vectors used in the equation 
(3) 

�K5, K6
 = .k 08|08| + qK�2 	for	 .− π|T| < ? < π|T| , and	q =1,… . . , N2  

Here, k represents the wave vector and K�  and K� 
represent the shared wave vectors beside the CNT axis, where 
the translational vector is denoted by	|T|, and total hexagon 
unit cell is N. Therefore, 

|T| = √3πdCdD 	and	N = 2�n� + nm +m��dD  

Here dD is GCD of �2n +m� and �2m + n�. Therefore, K� and K� can be calculating by, 

K� = �2n +m�b� + �2m + n�b�NdD 	and	K� = mb� − nb�N  

2.3. Density of States 

 

Figure 2. Simulation of a CNT wave vectors in K-space with chiral vector of 
(25, 0). 

Vectors K�  and K�  dependent k-vectors (Figure 2) 
represent the single state area in momentum space AG�HIC�CJ =h�|K�||K�|/2  and a differential area as, AG = h�|K�|dk , 
where dk is in the direction of K�  and h is the Planck's 
constant. Therefore, per unit energy for the density of states is 
discussed follows, 

D�E�dE = 2 NOOPQRSTUTV = WX8|0Q||08| h�|K�| NYNZ = �|[|! .NZNY2H�   (4) 

The density of states is simulated using equation (4) for the 
chiral vector of (25, 0) CNT is shown in Fig. 3. 

Density of states (DOS) calculation involves the custom of 
numerical method due to the difficulty and association of the 
instances. Thus the energy dispersion relation designed in 
extract equation for the 1D DOS is as follows, 

D�E�dE = ∑ W!]PP^�√/
Z

_Z8HZ`	abcb8 dE			Odde�fNg       (5) 

where Ecmin is the transmission least value for the selected 
band. This least value is simulated in the following Fig. 2. 
DOS is recalculated from (5), the approximated simulation of 
DOS is shown in Fig. 3. 

 

Figure 3. CNT (25, 0) DOS simulation which accumulate the approximate. 

2.4. Effective Mass 

 

Figure 4. Simulation of the various chiral vector (n,m) electrons.  

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

Energy (eV)

D
en

si
ty

 o
f 

S
ta

te
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-8

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-19 Effective Mass vs Radius

Radius (nm)

m
*/

m



 American Journal of Nano Research and Application 2014; 2(6): 112-115  114 
 

Effective mass for a single band can be analyzed from (3) 
and it can be represent the absolute explanation for the CNT 
energy dispersion. The effective mass calculation for a 
semiconductor is defined in (6), 

mg∗ = X8
�i8jik8�

		                   (6) 

Equation (6) is designed further for the various CNT's with 
chiral vector of (n,m) electron effective mass is simulated 
shown in Fig. 4. 

Equation (6) represents the analysis of the effective masses 
of CNT which differ with the chiral vector extolled in (n, m) 
index. 

2.5. Intrinsic Carrier Concentration 

The carrier concentration of CNTs can be considered from 
the DOS. Semiconductors carrier concentration is represented 
by, 

nlfC = m D�E�f�E�dE	nZ`              (7) 

Here DOS is denoted by D�E�, Fermi level is denoted by f�E�, and Conduction band minima is denoted by E. 
Carrier concentration can be found from (5),  

nlfC = ∑ o W!]PP^�√/ . m E�E� − Epqgfb� �H�/�nZ` +Odd	e�fNIg
�1 + ejRjstu �H� dEv          (8) 

nlfC = W!]PP^�√/m �Ew + El��E� + 2ElE′�H�/� y1 +nz
ej{Rjs|j`tu 2H� dE′	             (9) 

In addition, insignificant transmission least value causes the 
dropped at the Fermi function ahead of the first band. 

Let x = E/KT and η = ZsHZ`0[  , to solve the difficulties from 

(9), 

nlfC = W√0[!]PP^�√/ 	m �KTx + El�[x�KTx + 2El�]H� �) �1 +nz e5Hf�H�dx	         (10) 

Two efficient restrictions is formulated in this work using 
the Fermi integral, 

L1: η ≪ −1 

nlfC = NlIeZsHZ`0[  

L2: η ≫ 1, nlfC = Nl �Zs8HZ8̀
Q 8)
0[  

where	Nl
=	4√KTKT and, I	� El2KT	 1√KT�

�KT	x + El�x� �⁄ �KT	x + 2El�� �⁄ eH5dx
�D`0[
z

 

Numerical integration method can be calculated this 

integral [26]. The higher boundary is substituted from infinity 

to 
�D`0[ , zero can be neglected as for values beyond this limit. 

The inferior limit is changed to 0+, at x = 0 to be 
Z`�0[. 

Carrier concentration is simulated for different CNTs (n,m) 
chiral vectors is shown in Fig. 5.  

 

Figure 5. Electron carrier concentrations for different carbon nanotubes. 

2.6. Doped Carbon Nanotubes 

The ability to dope semiconducting materials is important 
for the realization of electronic devices. In nanotubes, doping 
can be accomplished in different ways: substitution of B or N 
atoms in the lattice, insertion of atoms inside of the nanotubes, 
electrostatically, and charge transfer from adsorbents or 
substrates. Here we are interested in establishing the basic 
equations that determine the position of the Fermi level in 
doped nanotubes. This can be accomplished with the help of 
the intrinsic carrier concentration with the doping fraction f 
(electrons/atom) can be expressed by the following equation, 








 −
≈

Tk

EE

h

TkEma
f

R

cFBg
exp

4

*39

22/3

2

π
       (11) 

The position of the Fermi level with respect to the 
conduction band edge become, 














=−

Tkga

fR
TkEE

B

BcF 2/3

2/32/12/3

3

2
ln

γπ
        (12) 

 

Figure 6. Position of Fermi level with respect to the conduction band edge as 
a function of the doping fraction for the nanotubes with diameter of 1.95 nm. 
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Thus Fig. 6 shows the behavior of this function at room 
temperature for nanotubes of different sizes, assuming a band 
degeneracy of one (for a doubly degenerate first band, the 
Fermi level is lower by kBTln2). Of note is the doping at which 
the Fermi level reaches the band edge, with a value of about 
10−3 electrons/atom for nanotubes with radii in the 0.5~1 nm 
range. In fact, this doping is given by, 

2/3
3

2/32/12/3

2/3

102.5
2

3
*

R

Tk
g

R

Tkga
f BB −×==

γπ
     (13) 

where R is in nanometers and kBT is in eV. At room 
temperature a good rule of thumb is f*≈ 10−3/R3/2. 

3. Conclusions 
A brief explanation of CNT device physics is elucidated in 

this paper. The energy dispersion relation is explained and 
simulated using 2D graphene lattice in this research. Effective 
mass is analyzed for designing of optimum chiral vector 
design. Carrier concentration CNTs is drawn from the 
elaboration of density of states.  This analysis will help the 
designer helps to construct in the electrical properties of 
carbon nanotubes as well as the conductivity of carbon 
nanotubes in the electronic band structure. 
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